NOAA Technical Memorandum NWS SR-194

"FUZZYMOS": AFUZZY LOGIC SYSTEM FOR OBJECTIVE AVIATION

FORECASTING

Tom Hicks, MIC

National Weather Service
Center Weather Service Unit
Fort Worth, Texas

Scientific Services Division
Southern Region
Fort Worth, TX

December 1997

UNITED STATES National Oceanic and Atmospheric Administration National Weather Service
DEPARTMENT OF COMMERCE James Baker Robert Winokur

“iliam M. Daley, Secretary Under Secretary and Admitistrator Acting Assistant Administrator
)



ABSTRACT

Verification statistics indicate Model Qutput Statistics (MOS) to be the best
objective forecast tool for the aviation forecaster. However, a significant
limitation is that the MOS categorical forecasts cover a broad range of ceiling and
visibility values and can therefore be difficult to use operationally. This forces the
aviation forecaster to use other means to determine the "best" ceiling height or
visibility value within a particular category. FuzzyMOS is an objective forecast
system that uses issue hour, forecast period, initial ceiling or visibility category,
MOS, and verified MOS data as inputs to provide a categorical forecast output
that is essentially a type of conditional and calibrated MOS forecast. This output
is expressed as a decimal value and can then be converted to a specific ceiling
height or visibility. Over 130,000 forecasts were used in this study, and test results
indicate fuzzyMOS forecasts not only improved over MOS, but improved to a
substantially greater degree than the official NWS forecasts.

FuzzyMOS is a fuzzy system, based on fuzzy logic. And since many readers may
be unfamiliar with this topic, an introductory discussion of fuzzy logic is
presented. This is followed by details of the fuzzyMOS system and its subsequent
testing and verification.



1. Introduction
a. The trouble with MOS

Model Output Statistics (MOS, pronounced "moss") is the best objective forecast tool produced
by the National Weather Service (NWS) for the aviation forecaster. Verification data from over
130,000 forecasts used in this study clearly indicate this fact. Forecasts based on conditional
climatology from the PP-Tools software (Hicks, 1995) ran a close second in verification scores,
but MOS was the overall winner.

But there is a problem with MOS. Aviation forecast output from MOS is in the form of one-digit
categories--1 through 7 for ceiling, and 1 through 5 for visibility. These can be thought of as
mathematical sets that contain forecast ceiling or visibility conditions that meet certain threshold
values, For example, MOS category 4 for ceiling contains all ceiling heights from 1000 feet
through 3000 feet. Similarly, MOS category 4 for visibility contains all visibility values from 3
miles through 5 miles. This is the problem. If MOS is forecasting a category 4 ceiling, should the
forecaster be thinking about a 1000 foot ceiling, a 2000 foot ceiling, a 3000 foot ceiling, or what?
In terms of operational impact, a forecast ceiling of 1000 feet is for conditions that are just barely
VER (visual flight rules), and this is sharply different operationally from a forecast ceiling of
3000 feet.

b. A different approach

This paper offers a different approach to objective aviation forecasting that builds on the skill of
"calibrated" MOS data and ultimately produces a "fuzzy" categorical forecast that can easily be
converted to a specific ceiling or visibility forecast. User inputs to this system are issue hour,
forecast period, initial ceiling or visibility condition, and MOS forecast. An additional input is a
disk file of verified MOS data. The "fuzzyMOS" output is a ceiling or visibility MOS forecast
category--but expressed as a decimal number such as 4.3. This value is then converted to a
ceiling or visibility forecast such as 2500 feet or 2.5 miles. Verification of fuzzyMOS forecast
data for a six-month period for 30 forecast locations across the United States indicated that
fuzzyMOS not only improved over MOS by 12.9 percent, but improved over MOS fo a greater
degree than the official NWS aviation forecast (8.0 percent over MOS)!

Fuzzy logic, or more specifically, a fuzzy logic system was the basis for this study. And since
many readers may be unfamiliar with this topic, a brief discussion of fuzzy logic and its
somewhat colorful history is presented. This will then be followed by a discussion of the
development of fuzzyMOS and a look at its verification data.



2. Fuzzy logic and fuzzy systems

Fuzzy logic is not logic that is fuzzy, but logic that describes and tames fuzziness (McNeill and
Freiberger, 1993). Since the days of the ancient Greeks, scientists and mathematicians have used
"black and white" laws of logic to describe and discuss the "gray" universe, For centuries, many
scientists, mathematicians and philosophers have brooded about this grayness (Kosko, 1993).

So far as the laws of mathematics refer to reality, they are not
certain, And so far as they are certain, they do not refer to reality.
Albert Einstein
Geometry and Experience

a. The fuzzy principle

The fuzzy principle states that everything is a matter of degree (Kosko, 1993). Fuzzy logic is
based on the premise that any given object might belong to a certain "fuzzy" set to a degree
ranging from 0 to 1. In practical terms, this might mean that a glass of water might be considered
full to the degree 0.5. Or a person might be considered tall to the degree 0.8, Furthermore, an
object might simultaneously belong to more than one such fuzzy set. For example, a glass of
water might be considered empty to the degree 0.5 and at the same time be considered full to the
degree 0.5. While this is no problem for fuzzy logic, it represents a paradox for conventional
logic. And according to Kosko (1993), science has avoided this paradox by simply "rounding off"
and calling the glass of water either full or empty.

The concept of fuzzy or "vague" sets was first introduced by Max Black (1909-1988), but it was
Lotfi Zadeh, Professor of Systems Theory at the University of California, Berkley who actually
developed and expanded the theory and made fuzzy logic a reality.

b. Controversy

Zadeh's paper "Fuzzy Sets" was published in June of 1965, but it actually came under fire even
before it was published (McNeill and Freiberger,1993). According to Kosko (1993), "the term
'fuzzy' invited the wrath of science and received it. It forced the new field to grow up with all the
problems of a 'boy named Sue.' Government agencies gave no grants for fuzzy research. Few
journals or conferences accepted fuzzy papers. Academic departments did not promote faculty
who did fuzzy research, at least who did only fuzzy research. The fuzzy movement in those days
was a small cult and it went underground. It grew and matured without the usual support of
subsidized science.”

The concept of fuzzy sets with varying degrees of membership differs sharply from traditional
mathematical theory because it violates laws of logic that date back to the Greek philosopher
Aristotle. In particular, fuzzy logic breaks both the Law of Contradiction and the Law of the



Excluded Middle. The Law of Contradiction forbids both true and not-true at once, In the
Metaphysies, Aristotle states it more carefully: "The same thing cannot at the same time both
belong and not belong to the same object and in the same respect.”" The Law of the Excluded
Middle, or more properly, the Law of Bivalence forbids anything other than true and not-true. In
the Metaphysics, Aristotle expresses it thus: "Of any subject, one thing must be either asserted or
denied.” In other words, a sheep is either white or not-white. A statement is either true or not-true
(McNeill and Freiberger, 1993).

McNeill and Freiberger also indicate that criticism of fuzzy logic was often harsh, as indicated by
the following quotes: :

Fuzzy theory is wrong, wrong, and pernicious. What we need is
more logical thinking, not less. The danger of fuzzy logic is that it
will encourage the sort of imprecise thinking that has brought us
so much trouble. Fuzzy logic is the cocaine of science.
Professor William Kahan
University of California at Berkeley

"Fuzzification" is a kind of scientific permissiveness. It tends to

result in socially appealing slogans unaccompanied by the

discipline of hard scientific work and patient observation.
Professor Rudolf Kalman
University of Florida at Gainesville

Fuzziness is probability in disguise. I can design a controller with
probability that could do the same thing that you could do with
Suzzy logic.

Professor Myron Tribus

IEEE Institute, May 1988

Fuzzy logic is based on fuzzy thinking. It fails to distinguish

between the issues specifically addressed by the traditional

methods of logic, definition and statistical decision-making.
Jon Konieki in A7 Expert (1991)

Lotfi Zadeh credits these views to the "hammer principle." It says, if you have a hammer in your
hand, and it's your only tool, everything starts to look like a nail (von Altrock, 1995). According
to Kosko (1993), Zadeh's favorite quote was: "Friends come and go but enemies accumulate.”

While Western science largely rejected fuzzy logic, the Japanese not only welcomed it, but
dizzily embraced it by developing products such as intelligent washing machines, microwaves,
cameras, camcorders, and automobiles {(McNeill and Freiberger, 1993). What was needed in the
West was a champion of the fuzzy cause.



c. Bart Kosko--an American samurai

McNeill and Freiberger use the term "American samurai” in reference to the fuzzy logic efforts
of Professor Bart Kosko of the University of Southern California. Kosko's work in fuzzy theory
can only be described as remarkable. With degrees in philosophy, economics, mathematics, and
electrical engineering, he too brooded over the application of black-white science to a gray
world. He eamed his doctorate as a student of Lotfi Zadeh, and after witnessing some of the
criticism of fuzzy logic, he decided to determine once and for all whether fuzzy logic had
substance. If it existed, he would pursue it out to the end. If not, he would attack it with more
vengeance than its worst critics. He threw himself utterly into fuzziness and not only proved it
was real, but developed a new and all-embracing model of the field. Its base, which he calls the
Subsethood Theorem, led him to many of the root concepts of math in general and probability in

particular.

As described further by McNeill and Freiberger, "Kosko is a singular individual, brilliant, brash,
self-disciplined, competitive, and highly controversial, even within the fuzzy community, He is a
33-year-old polymath at USC, a mathematician, engineer, black-belt karate expert, screenwriter,
novelist, bodybuilder, and composer of symphonies and sonatas. In his spare time, he scuba
dives, shoots trap, and hunts wild boar with bow-and-arrow."

Zadeh is a much nicer guy than I am. He won't argue with other
people's rules. But that doesn't convince the mathematicians. You
have to step into the ring, wear their boxing gloves, beat them at
their own game. And that's where I come in.

1 have results I can prove and I throw an open challenge: I'll fight
anyone, on any conditions, any terms, provided it's convenient. I
have theorems and I have proofs. You've just got to take it on the
chin. There's nothing you can do about it. I didn't walk into battle

without a sword on,
Bart Kosko

Kosko's theorems have become the cornerstone of fuzzy theory. His Fuzzy Entropy Theorem
(Kosko, 1992) was his breakthrough concept. Entropy is a measure of uncertainty or disorder in a
system, His theorem measured the entropy or fuzziness of a fuzzy set, and it also went on to
show that fuzziness actually begins where conventional or Westemn logic ends. Additionally, it
yielded derivation of the fuzzy set rules of intersection, union, and complement that had
previously been proposed by Zadeh.

The fuzzy entropy theorem paved the way for his Subsethood Theorem (Kosko, 1992). This very
important theorem not only proved that fuzziness was real, but it derived Bayes theorem of

probability as a special case of subsethood--or fuzziness. Before the subsethood theorem, Kosko
says, probability rested on relative frequency as an axiom, beneath which lay only intuition. Now



he says "the probabilist's axioms are the fuzzy theorist's theorems" (McNeill and Freiberger,
1993).

Kosko's Fuzzy Approximation Theorem (Kosko, 1993) serves as a foundation for fuzzy systems.
It proves that a fuzzy system can model or approximate any system. The idea of a fuzzy system is
that cach piece of human knowledge can be expressed by rules of the form IF this THEN that.
But the key to fuzzy systems is that the rules are fuzzy rules that relate to fuzzy sets. The better
the rules cover the curve (or whatever) being modeled, then the smarter the system, And
furthermore, all the rules fire--all the time. They fire in parallel, and all rules fire to some degree.
Most rules fire to zero degree, some only fire partially. The result is a fuzzy weighted average
that determines the system's output.

Three very important characteristics of fuzzy systems are worthy of further emphasis: (1) fuzzy
systems are essentially math-free, (2) it does not matter if the variables are independent and
normally distributed, as often required by traditional statistical theory, and (3) the relationship
between inputs and output can take any form--it need not be linear.

3. Development of the fuzzyMOS system—adapted from von Altrock (1995)

An overview of the fuzzyMOS system is shown in Figure 1. There are four user inputs: issue
hour, forecast period, initial ceiling or visibility MOS category (Cat0), and the MOS categorical
forecast. An additional input to the system is a previously processed file of verified MOS data.
Three important steps in the development of a fuzzy logic system are fuzzification, fuzzy
inference, and defuzzification, Each of these topics will now be examined in more detail.

s fuzzyMOS

' fuzzyMOS System
‘ Overview

i Fuzzification Furzy [nference  Defuzzfication

H
+

Figure 1. Overview of the fuzzyMOS system.

a.Fuzzification

The first step in developing a fuzzy system is to define "linguistic variables" that use descriptive
and subjective terms to describe the inputs and output to the system. This is the "fuzzification"



step. Linguistic variables typically use words rather than rigid numbers to describe an object. As
an example, the linguistic variable "distance” could have the linguistic terms {far, medium, close,
zero, too_far}. Each of these descriptive terms is actually a fuzzy set that for any given situation
has a membership value between 0 and 1. For example, a given distance could be expressed as
far to the 0.6 degrec and medium to the 0.4 degree. The linguistic variables and terms for the
fuzzyMOS system are as follows:

linguistic variable possible values (terms)
IssueHr {00z, 06z, 12z, 18z}
Period {3hr, 6hr, Shr, 12hr}
Cat0 {1,2,3,4,5,6,7}
MOS {1,2,3,4,5,6,7}
fuzzyMOS {1,2,3,4,5,6,7}

The fuzzification step is not complete until the membership function for each term has been
defined, The membership degree for any term ranges from 0 to 1, with the maximum degree
associated with the term's most typical value. Adjacent terms should overlap with one term's
maximum membership at the same point where the next term has a membership of zero. An
example of the completed membership functions for the five terms in the linguistic variable

IssueHr is shown in Figure 2.

i EV--IssueHr

The membership function for the 06z term is highlighted in Figure 2. This function can be
defined and subsequently evaluated by specifying three points in x-y terms, Point A(0,0)
indicates zero membership at IssueHr 0, point B (6,1) represents maximum membership at
IssueHr 6, and point C(12,0) represents zero membership at IssueHr 12. Note that for an input
hour of 4, the degree of membership in the 06z term is 0.67. And very importantly, note that the
input hour of 4 also has membership in the 00z term to the degree of 0.33. For any value of
IssueHr, it will always have membership in either one or two fuzzy sets represented by the

specified linguistic terms.

In fuzzy logic, there are four so-called "standard membership functions." These are "Z-type",
"lambda-type", "pi-type" (for the Greek letter ) , and "S-type.” Each term's name is based on its



graphic appearance. In Figure 2, the 00z term is the Z-type, the 24z term is the S-type, and the
remaining terms are of the lambda type. The advantage of these standard membership functions
is that they can quickly be evaluated by computer processing. The computer code need only store
two to four points and one to two slope values for each term. The value of the membership
function can then be determined by an algorithm such as:

Slopel = (B.yv-A.v}/(B.x-A.x) // previously computed and stored
Slope2 (C.y-B,v)/(C.x-B.x) // previously computed and stored

IF input <= A.x THEN membership = 0
ELSE IF input <= B.,x THEN membership = min{l, {input-A.x)*Slopeil
ELSE membership = max{0, 1-{input-PointB.X)*-Slope2)}.

The remaining linguistic input variables for the fuzzyMOS system are shown in Figures 3-5. The
output linguistic variable will be discussed later, in the "defuzzification" part of the fuzzyMOS
process. It should be pointed out that each of the graphics in this paper are output from a
computer program developed by the author for the purpose of testing and demonstrating
fuzzyMOS. This computer program was developed in Borland Delphi 2, and its functionality is
based on ideas from the fizzyTech software that is packaged with the reference text Fuzzy Logic
and NeuroFuzzy Applications Explained by von Altrack.,

& LWV--Period
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Figure 3. Linguistic variable Period and its terms.
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Figure 5. Linguistic variable MOS and its terms,

The linguistic variables that have been defined are actually used as links to the verified MOS data
that serves as the final and most important input to the fuzzyMOS system. This verification data
gives the fuzzyMOS system the "intelligence" that is processed into the final forecast output.

A computer program developed by the author was used to gather forecast verification data for
thirty forecast locations in the United States. The stations used in the study are listed in Table 1.

ABI Abilene, Texas LBB  Lubbock, Texas

ABQ  Albuquerque, New Mexico LIT Little Rock, Arkansas
ACT  Waco, Texas MAF  Midland-Odessa, Texas
AMA  Amarillo, Texas MCI  Kansas City, Missouri
ATL  Atlanta, Georgia ORE  Orlando, Florida

BOS  Boston, Massachusetts MEM Memphis, Tennessee
BRO  Brownsville, Texas MIA  Miami, Florida

CLT  Charlotte, North Carolina MSY  New Orleans, Louisiana
CRP Corpus Christi, Texas OKC  Oklahoma City, Oklahoma
DCA  Washington, DC, PHX  Phoenix, Arizona

DEN  Denver, Colorado SAT  San Antonio, Texas
DFW  Dallas-Fort Worth, Texas SHV  Shreveport, Louisiana
FTW  Fort Worik, Texas sSJT San Angelo, Texas
IAH Houston, Texas SLC Salt Lake City, Utah
JAX  Jacksonville, Florida SPS Wichita Falls, Texas

]
Table 1, Forecast verification locations used for fuzzyMOS rules

For each forecast location, aviation terminal forecasts, which may be referred to as terminal or
aerodrome forecasts (TAFSs) are issued four times daily: 00 UTC, 06 UTC, 12 UTC, and 18 UTC,
The verification data for each station consisted of the MOS categorical forecast, a categorical
conditional climatology forecast from PP-Tools, and the observed MOS categorical forecast. The
verification data were gathered for four forecast periods: 3, 6, 9, and 12 hours from the valid hour
of the forecast. Six months of forecast verification data were used to develop the fuzzyMOS
rules: January-June 1997,



The verification data were used to create tables for ceiling and visibility forecasts--one for each
combination of issue hour {0, 6, 12, 18 UTC}, period {3, 6, 9, 12 hours}, and initial MOS
category {1, 2, 3,4, 5, 6, 7}. For the six months of data, this resulted in 112 tables of ceiling
forecast data and 80 tables of visibility forecast data such as depicted in Figure 6,

Figure 6. MOS verification (frequency) data for 00 UTC
ceiling forecasts, valid 3 hours later, with initial ceiling
category 7.

The illustrated table is for MOS ceiling forecasts issued at 00 UTC, valid 3 hours later, with an
initial ceiling category of 7. The tabular frequency data shows that when MOS forecast a
category 4 ceiling, the observed ceiling condition was most frequently a higher category 7. Of 97
forecasts verified, 56 resulted in category 7, while only 19 resulted in category 4. MOS forecasts
for TAFs issued at 00 UTC would always be based on the previous 12 UTC model run and
would therefore be 12 hours old. But when matched with an initial ceiling category of 7, the
output indicates MOS was most likely to be pessimistic for this situation, So the data in the
tables can be considered to be a type of conditional and "calibrated" MOS data. The tabies should
capture any systematic biases or weaknesses that MOS might have for a given forecast situation,

The fuzzification of the verification data is accomplished by simply dividing each observed
frequency value for a given MOS forecast by the sum of the frequencies for all observed
categories for that particular forecast. For example, using Figure 6 and a MOS forecast of
category 4, the sum of all the observed frequencies wouldbe 56 + 7+ 6+ 19+6+2+ 1 =97.
Therefore, the fuzzification of observed categories 7 through 1 when a category 4 was forecast by
MOS would yield {0.58, 0.07, 0.06, 0.20, 0.06, 0.02, 0.01}. This represents the degree to which
each possible category was actually observed for the given forecast situation.

b. Fuzzy inference using IF-THEN rules

Now that all input variables have been converted to linguistic variables, the "fuzzy inference"
step is used to identify the rules that apply to the current situation and then compute the values of
the output linguistic variable. Figure 7 shows an example of rules used in the fuzzyMOS system.



# fuzzyMOS Forecast

2 (033 !lper 1.00
033 | tper 100
' 10.33 | per (100
2 1033 [1per | 100
033 | tper 1 1.00
(033 | lper 100
033 | 1per [ 1.00
067 | iper 1100
S067 {1per 11400
067 !per | 1.00
DE7 |iper ;1.00
057 | tper (1 1.00
067 |lper ;1.08
1067 [1per : 1.00

Figure 7. Example of fuzzyMOS rules.

Rules for a fuzzy system can come from various sources, and they can be stated in simple terms.
For example, rules for a control-type system could come from interviewing an expert: "IF
distance is small THEN power = medium." Rules can come from other sources such as neural
nets, where the system essentially learns its own rules. As a demonstration, Kosko(1992) and
others developed a neurofuzzy "truck backer-upper system” that modeled backing up a truck and
trailer rig (18-wheeler) from a random location in a parking lot to a loading dock. The system
learned how to avoid "jackknife" situations and was able to smoothly back up to the dock. This
particular system also clearly demonstrated how fuzzy systems could be used for modeling
systems that would be extremely difficult (if not impossible) to model using conventional

methods.

Rules for fuzzyMOS come from the MOS verification data. Each combination of issue hour,
period, initial category, MOS category, and observed MOS category makes one rule. These rules
represent the "intelligence” of a fuzzy system and are critical to the quality of the system's output.
Fourteen rules apply to the example forecast. Rule 1 can be read as follows:

IF {(IssueHr = 00z) AND (Period = lper) AND (Cat0 = cat7)
AND {MOS = catdd) AND {VerDat = cat7) THEN fuzzyM0S = 7.

Each of the rules has five input conditions and one output. Each of the terms in the rule has a
membership value that denotes the degree to which that term applies to this particular forecast
situation, Using rule 1 as an example, the degree to which a category 7 was actually observed in
the verification data was 0.58. Each rule also has an output weight associated with its fuzzyMOS
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term. This very important value represents the overall weight or degree of truth of the combined
terms in the IF part of the rule. The determination of this output weight will be discussed next.

1) Aggregation: computation of the IF part of the rules

Referring back to rule 1 from Figure 7, the IF part of the rule combines the five conditions
"IssueHr = 002", "Period = 1per", "Cat0 = cat7, and "MOS = cat4" and "VerDat = cat7." This
combination of terms actually defines whether the rule is valid in the current situation or not. In
conventional logic, the combination of these terms would be computed by the Boolean AND
operator. But in the case of fuzzy logic, the Boolean AND cannot be used because it cannot cope
with conditions that are not either all-true or all-false. In the development of fuzzy logic theory,
new set operators were derived for logical connectives such as AND, OR, and NOT. These fuzzy
set operators are listed in Table 2.

py AND pg = min{p,, ug}
HAOR pg = max{p,, s}
NOT p, =1-p,

e
Tabie 2. Logic operators for fuzzy sets.

The aggregation step is completed by applying the fuzzy set AND operator to the membership
values of the five conditions of the IF part of the rules from Figure 7 and the degree to which the
specific MOS category was actually observed. The membership values used in this step are taken
directly from Figures 2-5 and are also shown in each rule in Figure 7. The degree to which the
forecast MOS category was actually observed is the fuzzified verification data from tables such
as that shown in Figure 6, Results of the aggregation step for rules 1 through 7 are shown in

Table 3.

Rule 1 min{0.33, 1.00, 1.00, 1.00, 0.58} = 0.33
Rule 2 min{0.33, 1.00, 1.00, 1.00, 0.07} = 0.07
Rule 3 min{0.33, 1.00, 1.00, 1.00, 0.06} = 0.06
Rule 4 min{0.33, 1.00, 1.00, 1.00, 0.20} = 0.20
Rule 5 min{0.33, 1.00, 1.00, 1.00, 0.06} = 0.06
Rule 6 min{0.33, 1.00, 1.00, 1.00, 0.02} = 0.02
Rule 7 min{0.33, 1.00, 1.00, 1.00, 0.01} = 0.01

- |
Table 3. Results of rule aggregation step,

The results of the aggregation now agree with the rule output weights indicated in Figure 7. But
there is still more work to be done. As shown in Figure 7, a total of 14 rules are actually used.
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For rules 8 through 14, the issue hour term is different as are the membership values for the MOS
verification data. And very importantly, notice that some of the outputs are for the same
fuzzyMOS category--but to different degrees. This leads to the composition step.

2) Composition: computation of the THEN part of the rules

Each rule defines an action to be taken in the THEN part of the rule. The degree to which the
action is valid is given by the adequateness of the rule to the current situation. This adequateness
has been computed by the aggregation step as the degree of truth of the IF part of the rule. For the
example forecast, we have 14 rules that apply to seven possible outputs--to varying degrees.
These outputs must be combined before proceeding to the defuzzification step..

In a fuzzy logic rule system, either rule 1 is true, OR rule 2 is true, OR rule 3 is true, OR.... Using
the fuzzy logic operators as listed in Table 2, the OR is mathematically represented by the max
operator. Referring back to the example rules shown in Figure 7, rules 1 and 8 both have outputs
of fuzzyMOS category 7--but to different degrees. The final output weight for fuzzyMOS
category 7 will be the maximum of these two values, 0.47. Applying this composition step to the
seven possible outputs for the example forecast completes the fuzzy inference step of the
fuzzyMOS process. The final outputs and their weights are shown in Table 4,

category 7 to the degree of 0.47 (= max{0.33, 0.47}
category 6  to the degree of 0.09 (= max{0.07, 0.09}
category 5 to the degree of 0.10 (= max{0.06, 0.10}
category 4 to the degree of 0.26 (= max{0.20, 0.26}
category 3  to the degree of 0.06 (= max{0.06, 0.05}
category 2 to the degree of 0.02 (= max{0.02, 0.02}
category 1  to the degree 0f 0.02 (= max{0.01, 0.02}

|
Table 4, Fuzzy inference resuits for linguistic variable fuzzyMOS in the

example forecast.

Before leaving the fuzzy inference topic, it should be pointed out that there is a limit on the
number of rules that can apply to any given forecast. Note that the verification data contains up to
4x4x7x7x7= 5,488 possible rules for ceiling forecastsandupto4 x4 x5x5%x5=2,000
possible rules for visibility forecasts (based on the possible number of issue hours, periods, initial
categories, MOS forecast categories and observed MOS categories). However, the membership
functions for each variable's linguistic terms are structured in a way that allows no more than two
terms to apply to issue hour, period, and initial MOS category. The nonfuzzy MOS forecast is
always limited to just one term. This means that no morethan2x2x2x 1 x 7= 56 rules can
apply to a particular ceiling forecast, and nomore than 2 x 2 x 2 x 1 x 5 =40 rules can apply to a
visibility forecast.
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¢. Defuzzification

At the end of the fuzzy inference step, the result for fuzzyMOS is given as the value of a
linguistic variable. The value of the fuzzyMOS linguistic variable is defined by the membership
values of its seven linguistic terms, Before this information can be used in the preparation of a
forecast, it must first be translated into a single numeric value. This step is called defuzzification.

The result of the fuzzy inference for the example shown in Table 4 is both fuzzy and ambiguous
with seven different outputs having non-zero degrees of truth. How can these conflicting actions
that are defined as fuzzy sets be combined to produce a single numeric value that can be used in
the preparation of a forecast? The answer is that the various outputs are balanced. Most methods
for defuzzification use a two-step approach. In the first step, a "typical” value is computed for
each term in the linguistic variable. In the second step, the "best compromise"” is determined by
"balancing” the results, An example of this defuzzification process is shown in Figure 8.

LV--fuzzyMOS

Figure 8. Example of fuzzyMOS defuzzification process,

The most common approach to computing the typical value of each term is simply to use the
value associated with the maximum of the respective membership function. For the example
shown here, the large arrows coincide with the typical values for each term. The part of each
arrow that is black represents the membership value of that particular term, The computed
balance point for the example was at a fuzzyMOS value of 6.57. But due to the nature of the
verification data, one additional step was used to arrive at this value. This involves the concept of
"most plausible value."

The distribution of observed categorical outputs is often somewhat discontinuous and bimodal,
with higher frequencies associated with unlimited ceiling or visibility conditions and also at
some lower category. This characteristic also appears in the fuzzyMOS output. The approach
taken with fuzzyMOS was to first group the outputs around membership values that were above
average (0.14 in the example). For the example shown here, that led to groups consisting of
fuzzyMOS categories {7,6,5} and {6,5,4,3,2,1}. The membership values of each group were
added together, and the group with the higher value was considered to be the "most plausible"
group--{7,6,5} in this case. The "best compromise" technique was then used on this group.
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The best compromise employs the "weight-arm" technique from physics and is computed by
multiplying each term's typical value by its membership value and then dividing the sum of these
values by the sum of the membership values. For the example, that leads to a numerator of (7 x
0.47)+ (6 x 0.09) + (5 x 0.10) = 4.33 and a denominator of (0.47 + 0.09 + 0.10) = 0.66. This
leads to a fuzzyMOS value of 4.33/0.66 = 6.56. The value of 6.57 shown in Figure 8 is of course
more precise, since it was calculated with more than two-digit precision.

The final step in defuzzification is to convert the fuzzyMOS categorical forecast into a forecast
of ceiling height or visibility. Since the fuzzyMOS output is a decimal value based on weighted
output, it can be assumed to include more detail about the probable ceiling or visibility condition
than contained in the single-digit MOS categorical forecast. The conversion of fuzzyMOS to real
ceiling or visibility values is a straightforward linear transformation based on the boundaries of
the MOS categories shown in Table 5. It should be noted that the boundary threshold values were
adjusted slightly in order to better match the category boundaries of the fuzzyMOS linguistic

terms.

Ceiling Visibility
category  height (feet) category miles
7 > 12000 5 >5
6 6600 - 12000 4 3-5
5 3100 - 6500 3 1-23/4
4 1000 - 3000 2 1/2-7/8
3 500 - 900 1 <172
2 200 - 400
1 <200

Table 5. MOS categories for ceiling and visibility forecasts.

The algorithm for converting ceiling forecasts is as follows:

IF fuzzyMOS > 6.5 THEN
value = 9999 // unlimited ceiling

ELSE IF fuzzyMOS > 5.5 THEN

value = 6550 + {(fuzzyMOS-5.5)*(11500-6550)
ELSE IF fuzzyMOS > 4.5 THEN

value := 3050 + (fuzzyM0S-4.5)*(6550-3050)
ELSE IF fuzzyMOS > 3.5 THEN

value = 950 + (fuzzyMO0S8-3,5}*{3050-950)
ELSE IF fuzzyMOS > 2.5 THEN

value := 450 + (fuzzyM0S-2.5)*(950-450)
ELSE IF fuzzyMOS > 1.5 THEN

value = 150 + (fuzzyMOS-1.5)*{450-150)
ELSE value = 100,
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Similarly, the algorithm for converting visibility forecasts is:

IF fuzzyMOS > 4.5 THEN
value = 7 // unlimited visibility
ELSE IF fuzzyMOS > 3.5 THEN
value = 2.875 + (fuzzyM0S-3.5)*(5.5-2.875)
ELSE IF fuzzyMOS > 2.5 THEN
value = 0.875 + (fuzzyM0S$-2.5)*(2.875-0.875)
ELSE IF fuzzyMOS > 1.5 THEN
value = 0.375 + (fuzzyM0OS-1.5)*(0.875-0.375)
ELSE value = (.25,

For the example forecast, the ceiling transformation algorithm converts the fuzzyMOS forecast
of 6.57 to a forecast ceiling height of 9999 which denotes an unlimited ceiling. But one final
addition was made to the defuzzification process that provides more information to the aviation
forecaster in certain instances. If the combined membership of a secondary lower group in a
bimodal output distribution equals 0.50 or higher (as in this case), this indicates a fairly high
possibility that the lower condition might occur. The fuzzyMOS textual forecast therefore
includes that group's output value preceded by the word "TEMPO.” For the example forecast the
textual forecast for ceiling height was "unl TEMPO cig024." If the combined membership of the
lower group is less than 0.50, then the output ceiling height for that lower cloud group would be
preceded by "SCT", with a textual forecast for ceiling height such as "100 SCT024." This
provides more detail to the forecaster about the uncertainty of the particular forecast situation.
This concludes the defuzzification step, and this also concludes the development of the

fuzzyMOS process.
4, Testing and verification of fuzzyMOS

a. Tests on developmental data

As mentioned previously, the fuzzyMOS system was developed from verification data for 30
forecast locations, using forecasts issued at 00 UTC, 06 UTC, 12 UTC, and 18 UTC and
subsequently verified 3, 6, 9, and 12 hours after issuance. The data used was for the period
January through June of 1997. This resulted in 137,416 MOS forecasts that were used to create
192 verification tables such as described earlier in Figure 6. The first test of fuzzyMOS was
made on this developmental data, and fuzzyMOS was the winner in every forecast period. The
results are summarized in Table 6. It should be pointed out that for any single forecast, "category
error" is defined as the absolute value of the forecast MOS category minus the observed MOS
category. The values in the table represent the total of those errors.
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Ceiling Category Errors Visibility Category Errors

3hr  6hr 9hr  12hr 3hr  6hr  9hr  12hr
Persistence 10136 12652 14505 14285 2777 3652 3793 3819
PP-Tools 10117 11851 13323 13073 2351 2861 2644 2624
MOS 11615 11316 11581 10573 3402 3586 3469 3253
TAF 9633 10562 11361 10854 2529 2937 3003 2968
fuzzyMOS 9246 9902 10458 9570 2148 2524 2397 2426

- -
Table 6. Verification results for fuzzyMOS developmental data, January 1997-July 1997, Lowest

catggory errors are shown in bold type.

When developing a model from a set of data and then subsequently testing the model on that
same data, there is always the risk that the model might work just fine on the developmental data
but not work very well on independent data. To avoid this situation, the verification data was
separated into two groups: forecasts issued on even days and forecasts issued on odd days. The
fuzzyMOS tables were then developed from forecasts issued on odd days and then tested on
forecasts issued on even days. Then this strategy was repeated with the tables being developed
from forecasts issued on even days and subsequently tested on forecasts issued on odd days. The
combined results of these tests are summarized in Table 7. FuzzyMOS was clearly the winner,
with lowest category errors in all four periods of ceiling forecasts and three of four periods for
visibility forecasts. FuzzyMOS improved over MOS a total of 12.9%, while the official TAF
improved over MOS 8.0%. The comparative results are perhaps more apparent in the graph of
Figure 9. Comparative improvements over persistence and over MOS are indicated in Table 8.

Ceiling Category Errors Visibility Category Errors  Total

3hr 6hr Shr 12br 3ar 6hr 9hr  12hr
Persistence 10067 12592 14410 14224 2760 3609 3737 3763 65162
PP-Tools 10051 11792 13230 13010 2330 2831 2604 2584 58432
MOS 11462 11239 11508 10521 3355 3550 3412 3208 58255
TAF 9582 10533 11321 10816 2508 2912 2969 2929 53570
fuzzyMOS 9453 10221 10920 10079 2283 2692 2520 2594 50762

- - ]
Table 7. Combined verification results for the odd-day and even-day test data of January-June 1997, Lowest category

errors are shown in bold type. Overall improvement over MOS was 12.9% for fuzzyMOS and 8.0% for TAF.
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Figure 9. Comparative forecast verification of combined even-day and odd-day forecasts.

./
Comparative Forecast Improvement

over Persistence over MOS
PP-Tools 10.3%
MOS 10.6%
TAF 17.8% 8.0%
fuzzyMOS  22.1% 12.9%

|
Table 8. Comparative forecast improvement, even-day and odd-day

forecasts.

Using the same odd-day and even-day test data, a more detailed analysis was made to determine
how many times the original MOS forecast was changed and the success rate of these changes.
These results are summarized in Table 9. In every forecast period, when fuzzyMOS differed with
MOS, it most often resulted in an improved forecast. This table also indicates that the degree of
improvement over MOS was much greater with visibility forecasts than with ceiling forecasts.
Furthermore, this much greater improvement resulted from changes to a much smaller percentage

of MOS forecasts.
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Ceiling forecasts Visibility forecasts

3hir  6hr  9hr  12hr 3hr  6hr Shr  12hr
fests 17989 17382 17374 15802 17946 17378 17371 15791
better 18% 15% 13% 13% % 8% 7% 1%
worse 11% 10% 10% 10% 3% 4% 3% 4%
same error 1% 1% 1% 1% 1% 0% 1% 1%
unchanged 71% 75% 77% 7% 90% 89% 90% 8§9%
error ipvmt  18% 9% 5% 4% 49% 3% 42% 32%

-
Table 9. Comparison of fuzzyMOS versus MOS for the combined odd-day and even-day test data of

January-June 1997,

b. Additional test on independent data

An additional test of fuzzyMOS was made on an independent set of verification data for NWS
aviation forecasts issued for the one-year period July 1996 through June 1997. The forecast
locations for this data set are shown in Table 10, and it should be noted that PP-Tools forecasts
were not available for this data. The test results are shown in Table 11, Figure 10, and Table 12.
FuzzyMOS was the winner in every forecast period--and to an even greater degree overall.

ABI Abilene, Texas

ACT  Waco, Texas

DAL  Love Field, Dallas, Texas
DFW  Dallas-Fort Worth, Texas
LFK  Lufkin, Texas

|
Table 10. Forecast locations for independent test data, July 1996 - June 1997,

Ceiling Category Errors Visibility Category Errors ~ Total

3hr  6hr Shr  12hr 3ir 6hr Shr 12hr
Persistence 2089 2608 3141 3178 446 631 648 688 13429
PP-Tools na nfa wn/a n/a na na na na na
MOS 2333 2255 2321 2231 595 633 610 605 11583
TAF 2164 2313 2432 2347 461 576 519 584 11396
fuzzyMOS 1892 1988 2166 1995 340 415 388 411 9595

Table 11. Verification results for the independent data set of July 1996-June 1997. Lowest category errors are shown
in bold type.
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Figure 10. Comparative forecast verification of independent test data of July 1996-June 1997.

k. ________________________________ ]
Comparative Forecast Improvement

over Persistence over MOS
PP-Tools na
MOS 13.7%
TAF 15.1% 1.6%
fuzzyMOS  28.6% 17.2%

e
Table 12. Comparative forecast improvement, independent test data

of July 1996-June 1997,

5. Conclusions

All test results indicate that fuzzyMOS forecasts demonstrated a consistent improvement over
MOS forecasts. Furthermore, the demonstrated improvement over MOS was to a substantially
greater degree than the official NWS aviation forecasts. The consistent improvement over MOS
in combination with the more-detailed ceiling and visibility forecasts indicate that fuzzyMOS
could be a valuable tool for the preparation of aviation forecasts. And the implications of a
forecast system that might potentially outperform aviation meteorologists are staggering.

This fuzzyMOS forecast system will continue to undergo testing and tuning, and the database
from which it was developed will continue to grow. Additional ideas that will be tested are (1)
fuzzyMOS databases based on more regionalized forecasts and (2) fuzzyMOS databases that are
seasonal. Perhaps a combination of these two ideas can lead to even better forecast results.
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This fuzzyMOS forecast system will be used by another computer program currently under
development by the author. This program is called FREDD (Forecasting Resource and
Evaluative Data Display) and will include computer-generated aviation terminal forecasts that
will also be automatically monitored, automatically amended, and comprehensively verified.
FREDD will employ an additional level of artificial intelligence that will base its aviation
forecasts not only on fuzzyMOS but also on surface observations, conditional climatology, and
WSR-88D Doppler radar information. FREDD should be completed and ready for testing by Fall

of 1997.

Results of this study suggest that fuzzy systems might have great potential for other types of
meteorological modeling. As mentioned earlier, fuzzy systems do not require independent and
normally-distributed variables, and the relationships between inputs and output need not be
linear, Additionally, vast data resources are often available for meteorological modeling, and this

would allow for the development of fuzzy rules required by any such system.
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